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Abstract. We discuss temperature effects on anomalies. We deal with an anomaly in a spin- 
chain model presented in [l], where, in [Zl. anomaly meltdown was found. We present a slightly 
different treatment, that to us seems more plausible from a physical point of view, which shows 
anomaly persistence. We also discuss a similar problem for U(1) Schwinger terms in local 
current algebras. 

1. Introduction 

Dealing with finitetemperature models, one usually has many more possibilities to 
implement symmetries than in the zero-temperature case, which can lead to ambiguities 
concerning observable quantities. This problem should ,be resolvable on physical grounds. 
Recently there has been some interest on temperature effects on anomalies. In this paper 
we would like to emphasize some points which seem important to us, but might be well 
known to specialists. 

We revisit the anomaly between translations and time evolution in the infinite spin- ; chain discussed in [l]. We present a different implementation of translations at finite 
temperature and argue that our implementation is more favourable on physical grounds than 
that presented in [2]. But then the anomaly does not vanish. Instead it takes values in the 
commutant of the observable algebra and is thus an example of a non-commutative cocycle 
[l]. As the temperature approaches zero we recover the usual phase factor. 

We also discuss local U(l)-current algebras, where a similar problem concerning the 
(non-)vanishing of Schwinger terms occurs. 

2. The spin chain 

To fix the notation we review first the anomaly at zero temperature. Let A be the inductive 
limit C* algebra of the local net {d(A) : A E Z: /A(  < CO). Where d(A) := MZ(C)k 
and Mz(C) denotes the algebra of 2 x 2 matrices. Let Ak := . . . 1 @ A @ 1 . . .(MI place), 
and let of be the Eth Pauli matrix. Then the group Z of translations is represented on A by 
*-automorphisms T" which are uniquely determined by the assignment 

Ak H Tn(&) := &+". (1) 

t Supported in p m  by the 'Fonds m r  Wrdemng der wksenschaftlichen Forschung in Osterreich' under contract 
no P8916-PHY. 
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The time evolution of non-interacting spins in a constant magnetic field B(n) = B is given 
by the one-parameter group of *-automorphisms 

Ak H a,(Ak) :=exp ( Y 3 )  It--o;, Akexp ( . Y 3 )  -it-uk 

where M = p B ,  p =magnetic moment. Since the external field is translation invariant, we 
observe r, o 01, = at o r". The spin-flip automorphism y on the negative half-line defined 
by 

At H y(Ak) := O(k)Ak + (1 - O ( k ) ) ~ i A k ~ i  (3) 

reverses the direction of the external field for all spins on the negative axis. Here we have 
put O ( k )  = 1 if k 2 0 and 0 otherwise. As a consequence, the time evolution w' of 
non-interacting spins in the soliton external field B(k)  = sgn(k)B; sgn(k) := 2O(k) - 1, is 
obtained by conjugation of 01 with y ;  that is, 01;(At) := y 001, o y(Ak).  Since the external 
field is not constant, cq; commutes with rn only up to an inner automorphism. The positive 
linear form 

extends to the unique (a', p )  KMS state o p  over A which is invariant under both time- 
evolution automorphism groups 01 and a', corresponding to the constant and the soliton 
external fieldt. Note that we have put pg = (Trexp(-jI(M/2)u3))-I exp(-B(M/2)u3) = 
diag(l/(l + epM), 1/(1 + .-OM)). As p --f CO, wg tends in the w*-topology to the zero- 
temperature ground state w, which is defined by 

We find once more U, o 01; = U, o 0 1 ~  = U,, which follows from the preceding 
definition. By identification of the GNS Hilbert space 'H, with the incomplete infinite 
tensor product @,r,a(Cz)k the cyclic vector Q, must be identified with the product vector 
@ ~ - , ( e l ) l @ @ ~ & - z ) m ,  where el = (1,0)*, ez = ( 0 , l ) I .  It is clear that non-translational 
invariance of the soliton external field implies non-invariance of wp under translation 
automorphisms ra. Moreover, a translation of the domain wall, say to the right, for n 
units amounts to switch the direction of all spins in the interval [O, n - I]. Therefore the 
implementer V,(n) of translations, which is unique up to a phase due to irreducibility of 
the GNs representation associated to U,, has been defined in 113 by first determining its 
action on the cyclic vector 51, via 

In order to implement the automorphism r,,. Vm(n) has to act according to 

Vm(n)ir,(A)Q, := nm 0 rn(A)Vm(n)Qm (7) 

t We remark that r. and ar; commute when applied to the state U#. Due to a;-invariaoce of OQ we then have 
wp o m o .;' = OD o 7". that is $-invariance of the vansleed state. 
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on the total set of vectors r,(A)Q,, A E d in the GNS Hilbert space. The time- 
evolution automorphism groups corresponding to the constant and the soliton external 
field are implemented on E, by unitary one-parameter groups U, and U&, respectively. 
Whereas the generator of the latter is bounded from below, denoted by IT&, which is the 
true Hamiltonian of the system in the external soliton field, the generator of the former, 
denoted by H, has a symmetric spectrum. From 

(v,(n)Q,, HmVm(n)Q,) = nM (8) 

we learn that moving the domain wall to the left allows the extraction of an infinite amount 
of energy out of the system. 

Now an anomaly shows up. Although the automorphism ctt and r,, commute, the 
implementers do not. Indeed one finds 

v,(n) U,(t) = e-irMn U, (t  ) v,(n). (9) 

The underlying mechanism causing the anomaly is simply the spectral shift of H, induced 
by the adjoint action of V,(n). More precisely, Ad,(n,H, = H, - nM1. 

3. The anomaly at finite T 

What happens to this anomaly when the system is put into contact with a thermal bath? 
First of all we note that, due to wg-invariance, the automorphism groups a and Ors are 
implemented in the reducible GNS representation zg by unitary one-parameter groups 
Up and U;, which are unique once the arbitrary phase has been fixed by the standard 
convention Up(t)Qg = Uj(t)Qg = Qp. In contrast, the implementers V,(n) of translations 
are left undetermined up to a unitary element in the commutant zg(A)', if they exist 
at all. However, it turns out that translation symmetry is not spontaneously broken, 
and there are various choices possible. One of them proposed in [2] uses modular 
theory to construct implementers v p ( n )  which act for, say, n > 0 on Qg according to 
cg(n)~Qg = .g(n~~~u~)nli(n~~:u:)Qg, where I$(.) = Jng(.)J : A -+ rp(d)' is 
antilinear and J denotes the modular conjugation. Due to antilinearity of n; it happens 
that the anomaly vanishes since the phase factors cancel. However, the price to pay is that 
the (a priori ,%dependent) expectation value 

(Vg(n)Q,, H j V p ( W p )  = 0 VP (10) 

vanishes, and hence does not tend in the fl  + CO to the zero-temperature expectation value 
(V,(n)Q,, H&V,(n)Q,) = In[M. Thus choosing e&) as implementers would imply 
that translating the ground state does not cost energy, although one easily calculates that 
the magnetization changes proportional to n tanh(gM f2). 

We propose a different implementation Vg (n) which is a straightforward generalization 
of the zero-temperature case. Let 
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and extend Vp(n) as in (7) on ' H p ,  then it is easy to verify that Vp(n)* = Vp(-n) = Vp(n)-' 
and V.(n)Vp(m) = V,(n + m ) .  Moreover, the energy expectation value of the translated 
state turns out to be 

Wp(n)Qp, HjV+&)Qp) = InlMmh - (12) (3 
which tends in the p + CO limit to the zero-temperature expectation value lnlM cited above. 
Note that for both vector states Vp(n)Qp and ?p(n)Qp the expectation value of j ~ p ( $ ) ,  
which is the spin at site j ,  equals sgn(j)tarih(pM/Z) and the change in magnetization 
is equal for both choices. Therefore a translation which amounts to exchanging the 
probabilities for spin up and spin down in a finite interval also changes the energy of 
the state and we conclude, due to (IO) and (12), that Vp(n) is the correct choice. 

Remark. To get a better understanding of the two different ways to choose the translation 
operator, we can also have a look at the finite spin chain of length 2N + I: there 
the Hamiltonian h', the time-evolution operator exp(iths) and the density matrix p := 
exp(-ph")/Z, with Z := Tr(exp(-ph')) characterizing the kink state, can be written 
down explicitly as operators acting on (C*)m+'; no doubling or GNS construction are 
needed. The translation operators are represented on (C!2)2N*J by imposing antiperiodic 
boundary conditions in the obvious way. Then the operator Vp(n) acts on the kink ground 
state as udu: ...U;-'. One then easily calculates for the expectation value of V , ( l )  

(Vp(1)) := Tr(cz)w+tplrg(l) = 0. , (13) 

The translation operator is generated by the lattice momentum and it's expectation values 
should therefore not be altered by the choice of the doubled implementer. We compute for 
'our' choice 

and get for the other one 

So the first choice is in accordance with what one would expect from the thermodynamic 
limit of the finite spin-chain. We can also calculate the difference of the energy expectation 
values of the kink-state and the translated kink-state and get exactly the same result as for 
the infinitely long spin-chain and 'our' choice of implementer. 

Although our choice of Vp(n) yields reasonable zero-temperature limits, it is interesting 
to note that here also Vp(n) 6 q(d)". This is seen from 

Vp(n)rr;l(A)Vp(")* = xi(Adr2;,; 0 %(A))  (16) 

(n  > 0), which can easily be verified on the cyclic and separating vector Qp.  
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In our case the anomaly does not vanish. Instead it takes values in ng(d)'. One finds 
for the group commutator 

= Vp(n)ng ( n exp ( it-uj ; 3) uj exp ( - 1 t - c ~ ~  . ; 3))% 
j=-lnl 

= 0. 

But then (17) follows, since Qg is separating for the commutant. Note that we have 
used the explicit form A'/' = exp-(p/Z)Hg for the modular operator. The case n e 0 is 
treated similarly. 

What we have got here is an explicit example of a non-Abelian cohomology classt in 
the sense of [l]. Denote by (t ,  n)  elements in U(1) x Z, The group generated by 01 and r,. 
Define a map Qs : U(1) x Z + B(Xp) by Qp(t,  n)  := Ug(t)Vg(n). Then it is easy to see 
that 

Qp(t,n)Qg(t',n') =cp(t ,n; t ' ,n')Qg(t  +t',n+n') (18) 

where cg(t,  n; t', n') equals the right-hand side of (17), except that t is replaced by t'. 
Moreover, if we define a map q : U(1) x Z + Aut(ng(d)') by q(,,") := AdQe(t.n)lnp(d)', 
then cg satisfies the modified cocycle identity 

cg( t~ ,n l ; tz ,nz)cp@l  +tz,nl + n z ; f 3 , n d  = t l ( t l , n , ) ( ~ g ( ~ ~ 1 n z ) ) c g 0 1 , n l ; t ~ + t 3 , n ~ + n 3 )  

(19) 

t Although the cocycle in this example takes values in a commutative subgroup of the commutant, we use the 
e x p s i o n  'non-Abelian' whomology class as a technical term. 
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where tl satisfies 0 t l c ~ ~ , ~ ~ )  = AdcF(t,.n,:h.n2) 0 v(t,+ri.n,+nt). Thus the pair (cp, tl) 
determines an equivalence class in the sense of [l]. Moreover, it is a remarkable fact of our 
choice of Vp(n) that the np(A)’-valued cocycle cp tends continuously to the phase factor in 
(9). Although for different @ the representations np are mutually inequivalent, we are still 
allowed to take the p + 03 limit of matrix elements between a dense set of vectors in the 
GNS representation space. Using (4). a straightforward calculation yields 

whenever (np(A)Qp, np(B)Qp) f 0 and 0 otherwise. Thus, according to (20) the cocycle 
cp(t, n; t’, n’) ‘freezes’ to the phase factor 

Remark. Note that for the choice ?p(n) we may define g p ( t ,  n) := Up(t)?p(n). Then the 
multiplier vanishes and we have Q p ( t ,  n)Qp(z‘,  n’) = Qp( t  + t’, n + n’), which is referred 
to in I21 as ‘anomaly meltdown’. Therefore our non-commutative cocycle turns out to be a 
coboundary. To be more precise, put pp(t. n) := Qp( t ,  n)&(t. n)*. We have 

in the -+ 00 limit. 

A Straightforward calculation then shows that the calculation 

c&, n;  t‘, n’) = ~ p ( t ,  n)Ado6cI,n,(pp(t’, n‘))pp(t + t’, n + n9-I (22) 

is valid. What we learn from this example is the fact that, although the cocycle may be 
gauged away by redefining Q p ( t ,  n)  according to &(t, n)  := pp(t, n)-’Qp(t, n). we are 
not allowed to do so on physical grounds. From the preceding discussion (see, for instance, 
(IO) and (12)) it is clear that the difference in energy of wp and the manslated state o p  o r,, 
must come out correctly, which turns out to be the case for the choice of Q p ( t ,  n) only. 

In addition we see from (20) that the non-commutative coboundary c p ( t ,  n; t‘, n’) 
‘freezes’ to the phase factor e-’“” which determines a non-trivial element in H2(U(l) x 
Z, U(1)) .  However, this is only possible since the zero-temperature limit of the matrix 
elements (np(A)Q,,  pp(f, n)np(B)Qp) does not exist. 

4. Local charges in 2D-QFT at finite T 

4.1. Temperature zero 

Let H be the Hilbert space L2@.Cz) and h a selfadjoint Dirac-Hamiltonian on H. 
Introduce the negative energy projector P := O(-h). Let w p  be the quasifree, gauge- 
invariant state on CAR(H) defined by its two-point function. 

w ( a + ( f ) a W  = (f, pg). (23) 



On spin chains, charges and anomalies 3985 

Let ( 'Hp,  z p ,  Q p )  be the associated GNS-triple. 
Implement local chiral gauge transformations exp(it(a + ~ 5 ~ 5 ) )  in np: if we use the 

free, massive Dirac-Hamiltonian, this puts constraints on the asymptotics of as, but not 
on a 151. If we demand strong implementability, a5 must vanish at infinity, whilst a does 
not have to. As we want to have both functions out of the same class, we take both from 
Map@, Lie(U(1))). 

From the condition that fp(exp(ita)) = exp(itdrp(a)) implements the gauge 
transformation, we find (using the abbreviation ap(f)  := a p ( u ( f ) ) )  

[ d r p ( a ) . a f ( f ) l  = a f w ) .  (24) 

Since the implementer d r p ( a )  is only defined up to an additive constant, we choose 
(Gp, drp(a )Qp)  = 0, which is nothing but normal ordering. 

We now take f E (1 - P)'H and calculate one-particle expectation values, using that 
ap( f )Qp  = 0: 

( a f ( f ) Q ~ ,  drp(or)a f ( f )Qp)  = ( a f ( f ) % ,  (a f ( f )drp(or)  + af@f))Qp) 

(25) = (af, (1 - P)f) 
= (Uf! f). 

The local charge operator measures the amount of charge in the region suppa c B and is 
an observable. The fact that a Schwinger term arises between local charge and local axial 
charge 

[drp (a ) ,  d r p ( a s ~ s ) l =  L a a i  (26) 

is a statement of incommensurability of both quantities. 

4.2. T P 0 

Let OT be the state associated with T = (exp(ph)+ l)-' describing the canonical ensemble 
161. The associated GNS representation (XT. z ~ ,  QT) is reducible; the vacuum is cyclic and 
separating. Therefore there is no good pariicle interpretation: the vacuum is not annihilated 
by a subset of the CAR. 

We implement gauge transfoAations 21 la Lundberg [3] and get an implementer whose 
generator is affiliated to zr(CAR(X))". Since ar(CAR(X))" is a factor, the generator 
drT(a )  is uniquely determined by demanding its vanishing vacuum expectation value. 
Thus the local gauge transformations act as inner automorphism of this Von Neumann 
algebra. We still can calculate matrix elements: 

(a$( f )%,  d r T ( a ) a t ( f ) Q T )  = ( a f ( f ) & ,  (a$(f)dr&) + a!(af))Q~) 
(27) 

= (aT( f )a: ( f )QT,drr(a)GT)  +w- (a ( f )a t (a f ) ) .  

We should remark explicitly, that Vf E I.1, a r ( f ) a k ( f ) %  is not a multiple of QT. 
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Remark. One can also show that 
introducing a chemical potential I.L # 0 and dealing with the grand canonical ensemble 
makes no difference for implementability of (axial) gauge transformations with generators 
with compact support. 

When doing the doubling construction, we dont want matrix elements to change. The 
doubling-up enlarges 7-I to 7-1 fB 7.1 and we investigate the pure state op, over CAR(7.1) 
defined by the projector 

Implementability can easily be shown, as in 141. 

There is an ambiguity in lifting the Bogoliubov automorphisms of CAR(7.1) to Bogoliubov 
automorphisms of CAR(ZcB7-1). Let L : Ll(7-I) + Ll((7.1) to be a homomorphism of unitary 
groups. Then it is clear, that the unitary U fB [ ( U )  induces a Bogoliubov automorphism on 
CAR(’FI @ 7-1) which restricts to the automorphism induced by U on CAR(7-1 fB 0). Hence 
the generators of local gauge transformations are not unique in this scheme, once L has not 
been fixed. Denoting by abuse of notation the derivative of L by the same letter, we may 
write this generator as dr*(a fB ((a)). We will concentrate on the two possibilities L 0 
and L = id for the derivative. From d r p ,  being an implementer, we deduce 

[drp,(a@L(a)),ajl,(f$g)i = a j , ( ~ f f ~ ~ ( m .  (29) 

The choice L = 0. This corresponds to dr*(a @ 0) affiliated to ~ ~ ( c A R ( 7 - 1  fB 0)”. 
This follows from (29) together with np,(CAR(X fB 0))’ = dnFzpr(CAR(O @ X))”, where 
F is the fermion number operator. Note also that drp,(a e3 0) corresponds exactly to the 
choice of drT(a).  Since local charge is a measurable quantity, the unitary implementers 
should be reached by strong limits from the algebra. 

id. Although for this choice the matrix elements of drp&fB@) taken 
between vectors a*(fr fB 0). . . S2pr are the same as the matrix elements of drpr(a fB 0). 
the former generator is no more affiliated. Moreover, as has been noted in a previous 
publication [4], the choice L = id (which equals the diagonal embedding U H U @ U for 
Bogoliubov automorphisms), kills the Schwinger term. Thus there is a mechanism which 
allows us to eliminate the projective multiplier, which occurs due to the normal ordering 
procedure. 

Using the choice L = id, one.easily deduces from non-invariance of PT under 
conjugation with diu @SA‘ that &Adr*(uma) does not leave the cyclic vector invariant. 

If we insist on &eating the algebra elements and local charges on the same footing, we 
may calculate the same matrix element as before. With ~ ( f )  := 0 or f whenever L is 0 or 
id we find 

The choice L 
t 

( a l , ( f f ~ l ( f ) ) ~ 2 ~ . d r ~ ~ ( . ( 0 l  ~ B W ~ L J ~ ~ B  [ ( f ) ) ~ ~ ~ )  
= (ap,(f  f~ ~tr))a>,(f L(fwP, . ,drf i (a  L ( ~ ) ) O , )  

+ op,(a*(f  fB L(n,&a.f fB (@)U))). 
Since we demand manix elements to be identical, we can now compare 



5. Global charges in 2D-QFT at finite 2' 

At finite temperature it turns out that global quantities l i e  charge and axial charge are 
no more affiliated to the observable algebra, in contrast to local operations. Consider, 
for example, rigid gauge transformations @, 01 E W. Since or, T = (expwh) + 1)-' 
is left invariant by the gauge automorphism ai(f) H at(e'"f); the gauge symmetry is 
implemented by eiuQ on the GNS space. Now it is easy to see that eimQ cannot commute 
with operators in the commutant. From 

(e'"Qn;(ai(f))e-'"P - a~(a+(e'"f)))npT = o (33) 

we learn that @Q induces the same gauge automorphism on the commutant, and therefore 
cannot be affiliated with n~(cAR(7i))". Another way to see this is to check the Hilbert- 
Schmidt norm of PT - (e'" 63 R)PT(e" fB R)-', which can easily be seen to be infinite for 
non-compact space R. Thus rigid gauge transformations do not act as inner automorphism 
of the Von Neumann algebra, and we conclude that global quantities at finite temperature 
become physically troublesome. 
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